

Features

Digital display for FM and AM radio receivers
A very useful addition to analog radio receivers.

- Displays the frequency of tuned stations with the accuracy of the crystal oscillator.
- Easy to tune with perfectly accurate tuning of the station you receive.
- Suitable as a scale complement for manual tuning receivers, due to small dimensions, can be placed, for example, so that the display is visible behind the existing scale.
- The scale module has two inputs for the oscillator signal - AM bands and FM bands.
- Power supply 6.3-15 V DC, approx. 80 mA (according to the number of display segments lit)
- Display: 4 and 1/2-digit scale for indication of tuned Frequency, height 10 mm .
- The scale display displays the tuned frequency on a five-digit scale.
- The first number from the left indicates values of 1 or 0 .
- The next three numbers display values of 0 through 9.
- The last number shows 0 or 5 .
- Dimenson: $55 \times 60 \mathrm{~mm}$

FM range : 30 MHz to $150 \mathrm{MHz}, 50 \mathrm{kHz}$ display step
SV, DV range : 000 kHz to $1999 \mathrm{kHz}, 1 \mathrm{kHz}$ display step

Interfrequency frequency preset:

FM : +10.700, +10.725, +10.750, +10.675 MHz, -10.700, -10.725, -10.675, -10.650 MHz, 50 kHz sv display step,
SV, DV : +450 kHz : 1 Hz display step, $+450 \mathrm{kHz}: 1 \mathrm{kHz}$ display step, $+455 \mathrm{kHz}: 1 \mathrm{kHz}$ display step, +469 kHz: 1 kHz display step

Input connector:
$1+6$ to 15 V
2 ground (0)
3 not connected when measuring FM, when measuring AM connect to the ground (0)*
4 FM input
5 input AM *
*By connecting a suitable NPN C-E transistor, the am measurement input can be switched by voltage supplied from the am receiver part via a suitable resistor (about 10k), based on this transistor.

Receiver mf frequency preset (DIP Switch):

$5 / 4 / 3 / \mathrm{mf}$ frequency (MHz)
$0 / 0 / 0 /+10.700$ (oscillator under the frequency received)
$0 / 0 / 1 /+10.725$ (oscillator under the accepted frequency)
$0 / 1 / 0 /+10.675$ (oscillator under the accepted frequency)
0 / 1 / 1 / +10.750 (oscillator below received frequency)
1/0/0/-10.700 (oscillator above the received frequency)
1/0/1/-10.725 (oscillator above the received frequency)
1 / 1 / 0 /-10.675 (oscillator above the received frequency)
1/1/1/-10.650 (oscillator above the accepted frequency)
$2 / 1 / \mathrm{mf}$ frequency (kHz)
$0 / 0 /+450$
$1 / 0 /+455$
1/1/+469

